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Abstract — In this paper the method of circuit synthesis using 
transformation of trees with pathological elements is discussed. 
The generalization and mathematical proof of equivalent 
transformations of trees with mirror and/or nullor pathological 
elements are presented. Algorithm of generating equivalent trees 
with these pathological elements is also suggested. It is based on 
tagging of the vertices (nodes) by taking into account a type of 
pathological elements between these nodes and preserving these 
tags during transformations of trees. Illustrative example of 
universal filter synthesis by means of proposed algorithm is 
included. 
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I. INTRODUCTION 

One of the effective methods of synthesis of active analog 
circuits is their equivalent transformations [1]–[7]. This method 
can be used when the original structure of the circuit has been 
obtained as a result of an invention or some other methods of 
synthesis. During this procedure, only circuit topology 
(interconnection of elements) is changed.  

The equivalence of circuits is due to the fact that the system 
of Kirchhoff's equations, which describes such circuits, is 
identical. This is easy to achieve when ideal models of 
elements (especially active) are used in these equivalent circuit 
transformations. However, characteristics and parameters of 
equivalent circuits may be different and superior than of the 
original circuit in case of using more complex models of 
elements and, of course, real elements. Therefore, the method 
of equivalent circuit transformations is widely used at final 
stages of design and optimization of active analog circuits, 
such as filters, oscillators, amplifiers, etc. [2].  

Probably the most popular methods of equivalent 
transformations are based on the transformation of circuits with 
ideal active elements in the form of nullors (a pair of   
pathological elements – nullator and norator) [1]–[6] presented 
in Fig. 1(a) and Fig. 1(b). 

 

 

 

Fig. 1. Nullor and mirror pathological elements: nullator (a), norator (b), 
voltage mirror (c), current mirror (d). 

Nullator is a two-pole in which voltage and current is equal 
to 0: 

ቄܷ ൌ 0
ܫ ൌ 0

                                           (1) 

 Norator is two-pole in which voltage U and current I are 
arbitrary and do not depend on each other.  

New types of pathological elements – voltage mirror (VM) 
and current mirror (CM), are presented in Fig. 1(c) and            
Fig. 1(d) correspondingly. VM and CM are successfully used 
in the analysis and synthesis of electronic circuits [7]–[10]. 
Unlike the nullor, these elements have three poles (one of 
which is ground). However it is useful to use them as a two-
port element (similar to nullors) and do not show the third 
ground node [9].  

Current I through floating nodes of VM is 0 and voltages at 
these nodes U1 and U2 are equal in magnitude but opposite in 
sign:  

ቄ ଵܷ ൌ െܷଶ
ܫ ൌ 0

                                      (2) 

Current through floating terminals of CM I1 and I2 are equal 
in magnitude but opposite in sign (direction) and the voltage on 
these terminals U1 and U2 may have any value and is not 
dependent on the current through this element:  

 ൜
ଵܫ ൌ െܫଶ

ଵܷ െ ܷଶ ൌ  (3)                                ݕ݊ܽ

Active elements in the original analog circuit are replaced 
during equivalent transformation with their nullor models. This 
replacement completely breaks the description of active 
elements connection. These active elements are simply not 
visible in the nullor equivalent circuit of the original circuit. 
Then, during the restoration of active elements from their 
nullor models, it is possible to combine nullors differently and 
this leads to new equivalent circuits [3]. 

Another way of circuit transformations is equivalent 
transformations of trees for nullators or norators [3], [4] as it is 
shown on Fig. 2(a) or Fig. 2(b). In this case, after replacing 
active elements in the circuit with the corresponding 
pathological elements, these possible trees with nullators and 
norators may be transformed in a new set of equivalent trees. 
Then pathological elements in all these circuits may be paired 
together using combinatorial methods. All these circuits will be 
equivalent to each other.  
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The widespread usage of nullors and mirror elements in the 
design of electronic circuits is primarily because these 
pathological elements are the basis of ideal models of large 
number of different active elements: from basic ones (like 
transistors) to more complex (like operational amplifiers, 
current converters and mirrors, etc.) [2], [7]–[9]. 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

Fig. 2. Equivalent trees of pathological elements: nullators (a), norators (b), 
voltage mirrors and nullators (c), current mirrors and norators (d). 

First the transformations for norator/nullator trees were 
proposed in [1] (Fig. 2(а) and Fig. 2(b)). On the Fig. 2(c) are 
shown all possible transformations for norators and CM 
proposed in [5]. Equivalent transformations for trees with 
norators/CM and nullator/VM shown in Fig. 2(c) and                 
Fig. 2(d) inside dashed line are presented in [6]. All tree 
transformations shown in Fig. 2(d) are developed in later 
publication of the same authors [7]. Note that the 
transformations in every publication mentioned above were 
presented without proving. 

In this paper we proposed the general approach to circuit 
synthesis by means of equivalent transformations of trees with 
all types of pathological elements. The mathematical 
definitions based on equations of the Kirchhoff's laws, graph 
theory [11] and method of equation system transformations 
[12] for equivalent transformations of trees with mixed 
pathological elements are proposed in Section II. In Section III 
the example of circuit synthesis by means of discussed 
equivalent transformations is presented. 

II. EQUIVALENT  TRANSFORMATIONS OF TREES WITH 

MIXED PATHOLOGICAL ELEMENTS 

Let us divide pathological elements into two groups. The 
first group consists of VM and nullators. The second group 
consists of CM and norators. We will consider circuits in each 

group of pathological elements are interconnected and form a 
tree. There may be several non-connected trees with the 
elements from the same group.   Also, trees of the elements of 
different groups may have common nodes.  Initially, we assume 
that there are no common (ground) nodes in each tree. 

Pathological elements that form a tree designate certain 
relations between the voltages of corresponding nodes (for 
trees with elements of the first group) or the current through 
edges of the tree (for trees with elements of the second group). 
For example, voltages of all nodes are identical for any tree 
consisting only of nullators (they will have the same absolute 
value and sign).  Voltages of nodes for trees with VM and 
possibly nullators will be different, since according to (2) VM 
inverts the voltage on its terminals. 

A. Trees with nullators and VM  

Fig. 3(a) shows the connection of two VM to a network in a 
way that they are forming a tree on nodes 1, 2 and 3. 

 

 

 

 

 

 

Fig. 3. Connection of the trees of VM and nullator to some circuit: original 
tree of VM elements (a), non-equivalent tree of VM elements (b), equivalent 

trees of VM and nullator (c) and (d). 

For the circuit on Fig. 3(a), assuming the voltage of node 1 
to be U1 and using the properties of the VM (2), we obtain the 
following equations:  

ଵܷ ൌ െܷଶ,                                        (4)  

ܷଶ ൌ െܷଷ.                                        (5)  

 Combining (4) and (5), we will get:  

  ଵܷ ൌ െܷଶ ൌ ܷଷ .                             (6) 

We will now consider what will happen with the voltages 
of the same nodes when another tree of VM on the same nodes 
will be used. For example, reconnecting VM to nodes 1 and 3 
(Fig. 3(b)), we obtain the following: 

ଵܷ ൌ െܷଷ,                                      (7)  

ܷଶ ൌ െܷଷ,                                      (8)  

 Combining (7) and (8), we will have:  

 ଵܷ ൌ ܷଶ ൌ െܷଷ,                             (9) 

Comparing (6) and (9), one can see that the various trees 
with VM on these same nodes, in contrast to the trees with 
nullators, do not lead to the equivalent circuits because of the 
difference in these node voltages. In order to keep the 
equivalence of circuits on Fig. 3(a) and Fig. 3(b), it is 
necessary to replace the lower VM (in Fig. 3(b)) by nullator, as 
shown in Fig. 3(c).  
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The question arises how to choose the type of the edge of 
the tree – VM or nullator – in order to provide these same 
voltages as in the original circuit?  Type of the edges can be 
determined based on the tags in the incident nodes. If tags of 
these nodes are the same, the edge is replaced by a nullator, if 
tags are opposite, the edge is replaced by VM (Table I, 1–4).  

We will illustrate this process with the example of the 
circuit in Fig. 3. It is known [11], that for these three nodes one 
can build 3 non-isomorphic trees, presented in Fig. 4.  

 

 

Fig. 4. All trees built on three nodes with tags from the circuit on Fig. 3(a). 

Tree on Fig. 4(a) corresponds to the original circuit on            
Fig. 3(a). The signs of voltages for these nodes obtained from 
(6) are also shown on it. Nodes of other trees on Fig. 4(b) and         
Fig. 4(c) should be tagged by the same tags in order to ensure 
the circuit equivalence. Now it is possible to define the types of 
the edges of trees in Fig. 4(b) and Fig. 4(c) according to rules 
in the Table I. For example, in Fig. 4(b) between nodes 1 and 3 
there should be a nullator, and the edge connecting nodes 2 and 
3 should be VM. Corresponding circuit was obtained 
previously and is shown on Fig. 3(c). Equivalent circuit 
corresponding to the tree in Fig. 4(c) is shown on Fig. 3(d). 

Note that equivalent circuits in Fig. 3(c) and Fig. 3(d) were 
presented before in [6], without specifying that they are 
equivalent to the circuit with two VM in Fig. 3(a). 

TABLE I. Correspondence of Elements and Node Tags 
                     ___________________________________________ 
  
                          N      Node tags                    Elements 
                        ___________________________________________ 
                          1          +      –                        VM (CM) 
                          2          +      +                  nullator (norator) 
                          3          –      –                   nullator (norator) 
                          4          –      +                      VM (CM) 
                          5          0      0          VM or nullator (CM or norator) 
                         ___________________________________________ 
 

B. Trees with norators and CM 

We will consider now the circuits with two CMs (elements 
of the second group) having a common node and forming a tree 
on the nodes 1, 2 and 3 (Fig. 5(a)).  

  

 

 

 

 

 

 
Fig.  5. Connection of trees with CM and norator elements to some circuit: 

original CM tree (a), equivalent CM and norator trees (b) and (c). 

Equations of the first Kirchhoff's law for the nodes 1, 2 and 
3 of this circuit are:  

ቐ
∑ ଵܫ ൌ ܫ

∑ ଶܫ ൌ ܫ  ܫ
	∑ ଷܫ ൌ ܫ

                           (10)  

Left side of equations in (10) represents a sum of all the 
currents for the corresponding nodes, and the right side has the 
currents of pathological elements.  

In order to eliminate the currents Ia and Ib, which uncertain 
values do not affect the solution of the system, we will use a 
method of equation system transformations, similar to 
proposed in [12]. Firstly we will subtract equation for node 1 
from that of node 2:  

൜
∑ ଶܫ െ ∑ ଵܫ ൌ ܫ

∑ ଷܫ ൌ ܫ
                          (11)  

Subtraction operation can be shown with opposite tags for 
nodes 1 and 2 in the tree. Then we will subtract the second 
equation from the first one in (10). Again, this subtraction can 
be shown with opposite tags for these nodes. However, since 
one of the nodes (number 2) has already been assigned a tag, 
we should use it and assign the opposite tag to another node 
(number 3). Therefore, the tree of two CM can also be 
represented as shown on Fig. 4(a). Trees of the equivalent 
circuits with CM (similar to the trees with two VM) are 
presented in Fig. 4(b) and Fig. 4(c).  

The trees that were generated for the circuits in Fig. 3(a) 
and Fig. 5(a) are identical. However, for the trees containing 
CM, these tags show not the signs of node voltages, but the 
operation that should be undertaken with the equations for 
currents of incident edges, that is, addition or subtraction of the 
equations by the first Kirchhoff's law for these nodes. 

For example, according to Fig. 4(b) it is necessary to add 
equations for nodes 1 and 3 because these nodes have the same 
tag. Then it is necessary to subtract second equation from the 
result of the first operation because nodes 2 and 3 have 
opposite tags.  

It is known [12] that operation of adding equations for 
some nodes corresponds to connection of the norator between 
these nodes. Therefore, for a tree in Fig. 4(b) we will have the 
circuit with pathological elements from the second group on 
Fig. 5(b). Similarly, Fig. 4(c) corresponds to the other 
connection of CM and norator as on Fig. 5(c). Rules for 
selecting type of edge of the pathological elements from the 
second group are also shown in Table  I. 

To assign tags to all nodes of the tree from the original 
circuit one can arbitrarily select tag of any node and then 
distribute these tags to other nodes of the tree according to the 
Table I, considering the type of the edge that are incident to the 
next node. There are two possible distributions of tags, which 
are inversely relative to each other. Nevertheless, selection of 
pathological elements for these two trees is the same because 
of the symmetry in rules of Table I.  

Also, this procedure does not result in the ambiguity of tag 
assignment of these nodes in the tree. Ambiguity can arise only 
when there are multiple paths from one node to another, but the 
tree, by definition, has no loops. 
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C. Grounded trees with pathological elements 

We will now consider the special case of the trees with VM 
and nullators, in which one of the nodes is connected to the 
ground. The voltage of this node is equal to 0 by definition. 
This means that using the properties of VM (2) and nullators 
(1), the voltages of all the other nodes will also be zero. This 
will be true for all trees, built on these nodes, and for any 
distribution of pathological elements as edges of a tree.  

 For example, consider the circuit with a grounded VM in 
Fig. 6(a).  This circuit corresponds to the tree of two VMs. 

 

 

 

 

 

Fig.  6. Trees with VM, connected to ground node (a); single CM (b) and 
norator (c), connected to ground. 

Since the voltage of all nodes is equal to 0, then we denote 
this fact on the tree (Fig. 7(a)).  

 

 

 

Fig.  7. All possible trees built on three nodes with these tags from circuit on 
Fig. 6(a). 

Any edge in each of the tree in Fig. 7 can be selected as 
either VM or as nullator. For example, using the tree in Fig. 
6(а) it is possible to generate three equivalent trees with 
pathological elements of the first group (Fig. 8).   

 

 

 

Fig. 8. Equivalent grounded trees with VM and/or nullators. 

The last row of Table I corresponds to 0-tagged nodes that 
are incident to some VM or nullator.  

Before considering grounded trees of pathological elements 
of the second group, we will analyze two circuits with only one 
grounded element – CM or norator, shown in Fig. 6(b) and Fig. 
6(c), respectively. According to [9], circuits in Fig. 6(b) and 
Fig. 6(c) are equivalent.  

Let’s select the same direction of currents through these 
pathological elements (from the node 1). The equations of first 
Kirchhoff's law for node 1 in both circuits will be:  

 ∑ ଵܫ ൌ ܫ,                                    (12)  

where Ia is a current of the pathological element.  

From this equation, it turns out that CM connected to the 
ground behaves in exactly the same way as the norator also 
connected to the ground. Therefore, for both these circuits we 

can use a well-known rule for excluding grounded norators 
[12] (the exclusion of corresponding node equation).  

 Now we will add to this grounded pathological element 
others so they form a grounded tree. We will still assume that 
the node 1 is connected to a grounded pathological element, 
and the positive direction of the current is from the node 1. 
Then the Kirchhoff's equation for node 1 will be as follows: 

∑ ଵܫ ൌ ܫ  ൫∑ ܫ
ே
  ∑ ܫ

ேಾ
 ൯,               (13) 

where Ii are  currents of all Nn norators and Ij are currents of all 
NCM current mirrors, connected to the node 1. Since the tree of 
pathological elements does not have loops, then all currents Ii 
and Ij will also be included into these equations for some other 
(Nn+NCM) nodes of the circuit. Now we will exclude grounded 
pathological element by removing the equation for node 1. It is 
clear that new system of equations will still contain some 
currents of pathological elements, incidental to the node 1, and 
all these currents will be presented in the equations only once.  

Recursively applying the above exclusion rule for equations 
of remaining pathological elements in the tree we will finally 
obtain a system of equations in which all these equations 
corresponding to the nodes of the tree with pathological 
elements of the second group are excluded. As for grounded 
trees with pathological elements of the first group, distribution 
of pathological elements in edges of the tree, is not important. 

D. Algorithm of generation of equivalent trees 

We now propose an algorithm to generate equivalent trees 
with all types of pathological elements. Initial conditions for 
the algorithm below is a tree of elements from first group:  
nullator and/or VM, or second: norator and/or CM-group. 

1. If this tree does have a grounded node: 

1.1. Generate all trees based on these nodes. 

1.2. Each edge in these trees can be either nullor or mirror 
element, so all combinations of types of the edges should be 
made for each trees. Exit. 

2. If this tree does not have a grounded node:  

2.1. If tree does not have VM (CM), then generate all trees 
based on these nodes and select all edges of the trees as 
nullators (norators). Exit. 

2.2. If a tree has VM (CM): 

2.2.1. Assign tag “+” to the arbitrary node of the tree. 

2.2.2. For all edges of this tree, which are incident to the 
selected node, tag the second node according to the type of the 
edge (Table I) 

2.2.3. Repeat step 2.2.2 until all nodes of the tree are 
tagged. 

2.2.4. Generate all trees based on these nodes, preserving 
their tags; edges of these trees are considered uncertain.  

2.2.5. For each tree determine types of the uncertain edges 
according to the Table I. Exit. 
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A number of equivalent trees in case of grounded tree is 
equal to the number of trees multiplied by 2 to the power of the 
number of edges. For the floating tree, a number of equivalent 
trees is less and is equal to the number of trees constructed on 
the corresponding nodes [11]. 

The algorithm validity is corroborating by Table I proved 
above. The algorithm can be used to generate new equivalent 
circuits with different trees of pathological elements. 

III. ILLUSTRATIVE EXAMPLE 

As an example of equivalent transformations we will 
consider circuit of universal filter based on three ICCII+ 
proposed in [13], [14]. A model of such a filter with mirror 
elements is shown in Fig. 9.  

 

 

 

 

 

 

 

 

 

Fig. 9. Universal filter circuit based on three ICCII+. 

Two VM form a tree on nodes 3, 4 and 5. Applying the rule 
of tagging, nodes 3 and 5 will have the tag (+) and node 4 will 
have the tag (–). This tree is equivalent to the tree shown in 
Fig. 4(a). Having built two other trees corresponding to Fig. 4 
one can get two new equivalent circuits, in which one of VM is 
replaced by nullator as shown in Fig. 10 and Fig. 11.  

 

 

 

 

 

 

 

 

 

Fig.  10. The first equivalent circuit (for the circuit on Fig. 9) based on two 
ICCII+ and a CCII+, in which one of VM is replaced by nullator. 

When combining (pairing) nullator with one of the CM, we 
will get the equivalent circuits based on two ICCII+ and a 
CCII+. Note that the circuit on Fig. 11 also illustrates a known 
method of different pairing of pathological elements. 
Equivalence of the obtained circuits confirmed by equivalence 
of symbolic analysis results. 

 

 

 

 

 

 

 

 

 
 

Fig.  11. The second equivalent circuit (for the circuit on Fig. 9) based on two 
ICCII+ and a CCII+, in which one of VM is replaced by nullator. 

IV. CONCLUSIONS  

The generalization and proof of equivalent transformations 
of trees with pathological elements is presented in the paper. 
The algorithm of synthesis of circuit with mirror and nullor 
elements based on tagging of nodes of the initial tree of these 
elements and selecting new pathological elements is proposed. 
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