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The generalization of Bode’s sensitivity analysis technique for all types of the transfer functions and circuit elements is presented in
the paper. The proposed formulae for first- and second-order symbolic sensitivity calculation provide the compact size of obtained
expression and have the advantages of cancellation-free sum-of-product terms and matrix-free computation. This is achieved by
means of the concept of high order summative cofactors and the generalized parameter extractionmethod.The proposed technique
is implemented in symbolic circuit analysis program Cirsym. Illustrative example on symbolic sensitivity circuit analysis and
comparison of the presented technique with the transimpedancemethod and themethod based on themodified Coates flow-graph
are given.

1. Introduction

The influence of network components on transfer function
is expressed by sensitivities [1]. Sensitivity analysis is an
important part of analog circuit design process. There are
many methods of numerical calculation of circuit sensitivi-
ties, but only symbolic analysis of circuit sensitivity provides
the way to get analytical sensitivity function of all interested
circuit parameters. This is certainly advantageous in such
applications as circuit parameters optimization and Monte
Carlo simulation.

First researches on symbolic approach to sensitivity
analysis of analog circuit were presented in [1–5], but those
heuristic algorithms were not efficient enough and had
limitations by the circuits scale.

Nowadays several more effective symbolic sensitivity
analysis techniques have been developed. Some of them are
based on sequence of expression computation such as two-
port transimpedance method [6]. But the generated expres-
sions are not compact enough, do not fully exploit sharing
of subexpressions, cannot be easily manipulated, and com-
plicate the circuit insight.

The others methods are based on implementation
of graph theory for symbolic circuit analysis [7–10]. In

particular, the work in [7] shows the technique based
on themodified Coates flow-graph for performing sensitivity
analysis. However, the proposed concept requires the nodal
admittance matrix expansion, whichmay consist of the equal
summands with opposite sign. It leads to appearing of the
cancellation sum-of-product terms. In addition, the usage of
graph-based methods does not provide the optimal size of
obtaining expression.

Another widespread approach is implementation of the
modified nodal matrix [10, 11]. But obtained results are not
compact and include cancellations so the expressions often
present only in semisymbolic form.

In this paper we propose a cancellation-free symbolic
sensitivity technique for computation of compact expression.
The first- and second-order symbolic sensitivities formulas
for all types of the transfer functions and circuit elements
are derived by means of the concept of higher order sum-
mative cofactors (HOSC) [12–15] and generalized parameter
extractionmethod (GPEM) [16–21] to avoid drawbacks of the
previous methods mentioned above.

The rest of this paper is organized as follows. In Section 2
we explain the basic idea of sensitivity analysis by means of
GPEM and derive the formulae for symbolic sensitivity of
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Figure 1: Test circuit.

different transfer functions with respect to controlled sources
(CS) and two ports. The process of obtaining symbolic
expressions can be easily automated. The example of the
AC sensitivity analysis is presented in Section 3. In Section 4
the comparison of the presented method with the tran-
simpedance method and the method based on the modified
Coates flow-graph is performed. Section 5 concludes this
paper.

2. Theoretical Basis of the Proposed Method

2.1. Symbolic Approach for Sensitivity Analysis. Thesensitivity
computation of the transfer function of 𝑇(𝑠) with respect to
change of the parameter 𝑋 requires finding the correspond-
ing derivative:

𝑆 (𝐻 (𝑠) , 𝑋) =
𝑑𝐻 (𝑠)

𝐻 (𝑠)

𝑋

𝑑𝑋
. (1)

The study of network response by means of formula (1) is
acceptable only when changes in its parameter 𝑋 are small.
When some element’s parameters change significantly, this
approximated result may be unsatisfied. Analytical sensitivity
analysis would be much easier by using a symbolic approach
than by a numerical approach where computation cost is a
key concern.

If we consider the transfer function as 𝑇(𝑠) = 𝑁(𝑠)/𝐷(𝑠)

formula (1) will transform into expression proposed by
Hoang [5]:

𝑆 (𝑇 (𝑠) , 𝑋) = 𝑋(
𝑑𝑁 (𝑠)

𝑁 (𝑠)
−
𝑑𝑁 (𝑠)

𝐷 (𝑠)
) . (2)

Calculation of the transfer function derivatives leads
to appearance of multiple algebraic cofactors with different
signs and thus they may contain many cancellations. The
well-known technique proposed by Bode [1] presented the
sensitivity function 𝑇(𝑠) in form of ratio of determinant and
cofactors of nodal admittance or loop impedancematrixmul-
tiplication. For example, the sensitivity of 𝑇(𝑠) = 𝑉

3
(𝑠)/𝑉
1
(𝑠)

of the circuit in Figure 1 is expressed as follows:

𝑆
𝑇

𝑋
= −𝑋

Δ
15
Δ
73

ΔΔ
13

, (3)

where 𝑋 is a transfer impedance 𝑍 of current controlled
voltage source (CCVS) or transfer admittance of voltage

controlled current source (VCCS), Δ is a determinant of loop
impedance matrix or Δ = Δ

11
for nodal admittance matrix,

and Δ
11
, Δ
15
, Δ
13
, and Δ

73
are cofactors.

Expression (3) derived from (1) by means of Jacobi
identity in form of

Δ 13,75Δ = Δ
13
Δ
75
− Δ
15
Δ
73
, (4)

whereΔ 13,75 is a second-order cofactor.The rows and columns
with numbers 1 and 3, 5, and 7 correspond to input and output
variables (controlled and controlling variables of controlled
source).

Sensitivity analysis by means of Bode’s technique leads
to appearance of cancellations because of multiple entries of
elements parameters into the matrix. The sensitivity com-
putation formulae with numbered ports of multiport circuit
model presented in [5] are devoid of this drawback. But the
tedious combinatorial search of the transfer function from
one port to another is needed to use them.

We propose in this paper the generalization of Hoang for-
mula and Bode’s technique for all types of transfer functions
and circuit elements, based on implementation of the concept
of higher order summative cofactors (HOSC) [12–15] instead
of ordinary algebraic cofactors and computation of HOSC by
means of GPEM [16–21].

2.2. Higher Order Summative Cofactors and Generalized
Parameter Extraction Method. The higher order cofactor is
a cofactor of a cofactor. The 𝑛th order cofactor is repre-
sented by a symbol Δ

𝑟
1
,𝑘
1
,𝑟
2
,𝑘
2
,...,𝑟
𝑛
,𝑘
𝑛

, where 𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
and

𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
are the numbers of deleted rows and columns,

respectively. The summative cofactors are cofactors with at
least one deletion in a form (𝑎 + 𝑑) or (𝑎 − 𝑑), which means
the following: add or subtract the row (column) 𝑎 to or from
the row (column) 𝑑. For example the summative cofactors of
the same matrix can be expressed as follows [15]:

Δ
(𝑎+𝑏)(𝑐+𝑑)

= Δ
𝑎𝑐
− Δ
𝑎𝑑
− Δ
𝑏𝑐
+ Δ
𝑏𝑑
, (5)

where Δ
𝑎𝑐
= Δ
(𝑎+0)(𝑐+0)

, Δ
𝑎𝑑
= Δ
(𝑎+0)(𝑑+0)

, and so on.
In accordance with GPEM basis [16–21] we consider

the sums of row (column) indexes as a result of nullator
(norator) connection to the network nodes corresponding to
the indexes.

Let us express the voltage gain function for circuit model
in Figure 2(a) as follows:

𝑇 (𝑠) =
𝑉out (𝑠)

𝑉in (𝑠)
=
Δ
(1+2)(3+4)

Δ
(1+2)(1+2)

, (6)

where HOSC in the numerator is the determinant of the
network, in which the independent source and arbitrary
response are replaced by oriented nullor [16] and HOSC in
the denominator is the determinant of the network, in which
the independent excitation and the arbitrary response are
zero.

The calculation procedure of the network determinants
is based on the recursive usage of the parameter extraction
formula [16]:

Δ = 𝜒Δ (𝜒 󳨀→ ∞) + Δ (𝜒 = 0) , (7)
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Figure 2: The circuit for sensitivity computation of transfer functions: voltage gain (a), transfer admittance (b), transfer impedance (c), and
current gain (d).

where 𝜒 is a parameter of arbitrary linear circuit element and
Δ(𝜒 → ∞) and Δ(𝜒 = 0) correspond to the determinants
of the circuit matrix in which the parameter of extracted
elements 𝜒 → ∞ or 𝜒 = 0, respectively.

The parameter extraction formula (7) is applicable for
determinant calculation of the network consisting of any
kind of linear active circuitmodels including the pathological
elements (nullors and pathological mirrors). In case of nullor
extraction the special formula was proposed in [16]

Δ = ±Δ
𝑛
, (8)

where 𝜒 is the determinant of the circuit matrix after the
extraction procedure of the nullor number 𝑛. Equation (8)
means that the nullor extraction will change the sign of the
initial determinant. The choice of the sign depends on the
orientation of the nullator and norator. If these elements have
got the same orientation with respect to the basic node that
the sign will be positive, in the opposite case the sign will be
negative.

The procedure of nullor extraction can be formalized by
the following steps.

(1) The choice of the supporting nodes: first of the sup-
porting nodes should be connected to norator and
the second to nullator. If there is a common node
of a nullator and a norator it must be chosen as
single supporting node. Note that supporting node
may correspond to the ground node.

(2) The terminals of non-extracted norators and current
sources connected to supporting node are moved to
the opposite node of extracted norator. In that case the
non-extracted nullators and controlling voltages keep
connections to supporting node. Then in the same
way, the terminals of non-extracted nullators and
controlling voltages connected to supported node are
moved to the opposite node of extracted nullator. In
that case non-extracted norators and current sources
keep connections to supporting node.

(3) A norator and a nullator of the extracted nullor are
deleted from circuit. In case of two supporting nodes
they must combine.

(4) If extracted norator and nullator have got the same
orientation with respect to the supporting node then
the determinant sign will be positive. Otherwise the
sign will be negative. In case of two supporting nodes
the inverted rule is needed.

Formula (8) can be implemented not only for the nullor
extraction from circuit model, but also for Coates flow-graph
modification as shown in Section 4.

The generalized parameter extraction method does not
have any limitation by circuit size. The GPEM has been
realized by Filaretov in the program Cirsym (circuit simula-
tor) as a part of the software tool SCAD. The program can
be downloaded from http://intersyn.narod.ru/. The symbolic
expressions obtained by means of Cirsym are comparable
by the number of arithmetical operations with computation
results by means of the professional mathematic programs as
Maple and Matlab [22].

As can be seen from the comparison of symbolic ex-
pressions of notch filter transfer function [23] presented in
“Symbolic circuit analysis: Library of benchmark circuits”
(http://rodanski.net/ben/work/symbolic/index.htm) the re-
sult of program Cirsym named by Filaretov 2 is second
ranked. Also this result was replicated in [24] as example of
compact size expression.

2.3. Derivation of Symbolic Sensitivity Computation Formulae.
Let us express the transfer function (6) bymeans of parameter
extraction formula as

𝑇 (𝑠) =
𝑌Δ
(1+2)(3+4),(7+8)(5+6)

+ Δ
0

(1+2)(3+4)

𝑌Δ
(1+2)(1+2),(7+8)(5+6)

+ Δ
0

(1+2)(1+2)

, (9)

and then expressed the Hoang formula (2) as follows:

𝑆
𝑇

𝑌
= 𝑌 ⋅ (

Δ
∞

(1+2)(1+2)

Δ
(1+2)(1+2)

−
Δ
∞

Δ
) . (10)

Note, that upper indexes ⟨⟨0⟩⟩ and ⟨⟨∞⟩⟩ in formulas (9)
and (10) mean that those HOSC are derived with 𝑌 = 0 and
𝑌 → ∞ correspondingly. In case of controlled source the
operation 𝜒 → ∞ leads to substitution of CS by the nullor.

Formula (10) is applicable for sensitivity computation of
the arbitrary circuit elements. Just replace the ⟨⟨𝑌⟩⟩ by ⟨⟨𝜒⟩⟩.

Now let us consider the transformation of Bode formula
(1) by substitution of expression (9) and cancellation by
Δ
(1+2)(1+2)

:

𝑆
𝑇

𝑌
= 𝑌

Δ
(1+2)(3+4),(7+8)(5+6)

Δ
(1+2)(1+2)

Δ
(1+2)(1+2)

Δ
(1+2)(3+4)

− 𝑌
Δ
(1+2)(3+4)

Δ
(1+2)(1+2),(7+8)(5+6)

Δ
(1+2)(1+2)

Δ
(1+2)(3+4)

.

(11)
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Table 1: Sensitivity symbolic calculation formulae.

Number Sensitivity type Formula
1 𝑆

𝑇

𝜒 −
𝜒Δ
(1+2)(5+6)

Δ
(1+2)(1+2),(7+8)(3+4)

Δ
(1+2)(1+2)

Δ
(1+2)(3+4)2 𝑆

𝑌

𝜒

3 𝑆
𝐵

𝜒 −
𝜒Δ
(1+2)(5+6)

Δ
(7+8)(3+4)

ΔΔ
(1+2)(3+4)4 𝑆

𝑍

𝜒

We obtain the transfer function sensitivity expression
with respect to a VCCS parameter. It is possible to minimize
the numerator bymeans of Jacobi identity.We need to use the
HOSC Δ

(1+2)(1+2)
instead of determinant Δ:

𝑆
𝑇

𝑌
= −𝑌

Δ
(1+2)(5+6)

Δ
(1+2)(1+2),(7+8)(3+4)

Δ
(1+2)(1+2)

Δ
(1+2)(3+4)

. (12)

As can be seen, Δ
(1+2)(1+2)

is a numerator of trans-
fer function from circuit input to controlling voltage of
VCCS, Δ

(1+2)(1+2),(7+8)(3+4)
is a numerator of transfer func-

tion from controlled current source to circuit output, and
Δ
(1+2)(1+2)

Δ
(7+8)(3+4)

is a product of numerator and denom-
inator of voltage gain.

The process of sensitivity computation with respect to
other elements and/or for different transfer function types is
the same. In Table 1 the generalized sensitivity formulae are
proposed.

Note that the formula in first line of Table 1 is appropriate
not only for voltage gain, but also for transfer impedance
function. Let us show it for circuit in Figure 2(b):

𝑌 (𝑠) =
𝐼out (𝑠)

𝑉in (𝑠)
=
Δ
(1+2)(3+4)

Δ
(1+2)(1+2)

. (13)

Even if output nodes of transfer impedance function
in Figure 2(b) are connected in contrast to Figure 2(a), it
is obvious that expression (13) is equal to (6). The formu-
lae for transfer impedance (Figure 2(c)) and current gain
(Figure 2(d)) are similar like expressions (6) and (13):

𝑍 =
𝑉out
𝐼in

=
Δ
(1+2)(3+4)

Δ
,

𝐵 =
𝐼out
𝐼in

=
Δ
(1+2)(3+4)

Δ
.

(14)

The denominator of any sensitivity formulae in Table 1
is a product of initial transfer function numerator and
denominator and the numerator of the sensitivity formulae
is a product of numerators of transfer functions from circuit
input to controlled branch and from controlling source to
circuit output.

The proposed formulae are easy to use for sensitivity
computation of twoports. For example, if we change indexes 7
and 8 to 5 and 6 correspondingly, wewill obtain the sensitivity
function for admittance element:

𝑆
𝑇

𝑌
= −𝑌

Δ
(1+2)(5+6)

Δ
(1+2)(1+2),(5+6)(3+4)

Δ
(1+2)(1+2)

Δ
(1+2)(3+4)

. (15)
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Figure 3: The test circuit for second-order transfer impedance
sensitivity computation.

The formula for transfer function sensitivity with respect
to impedance parameter (𝜒 = 𝑍) can be derived in the same
way. We just have to replace the number of index 8 by 6.

For sensitivity of the input impedance or input admit-
tance functions derivation it is necessary to replace indexes
3 and 4 by 1 and 2 correspondingly.

2.4. The Special Topological Cases of Sensitivity Formulae
Simplification. If the voltage source of CS is connected in
parallel with a voltage output port or if the current source of
CS is connected in series with a current output port, we can
simplify the sensitivity formulae like that shown inTable 2. As
it can be seen, the HOSC indexes 3 and 4 correspond to 7 and
8. Taking into account the identity 𝜒Δ

(1+2)(5+6)
= Δ
(1+2)(7+8)

we obtain the expressions consisting of just two HOSC.
In the same way, we can easily simplify the sensitivity

formulae for other special cases if the input excitation
transfers directly to the controlling branch of CS, if the
controlled voltage source is connected to the input voltage
port in series or the controlled current source is connected
in parallel with input current source, and if the controlling
voltage of CS has the same port as output circuit voltage or
the controlling current of CS corresponds to output current
port.

2.5. The Second-Order Sensitivity Computation. Let us con-
sider the process of computation of second-order sensitivity
function.The repeated differentiation of first-order formulae
from Table 1 is needed in this case. So the second-order
transfer impedance sensitivity of circuit in Figure 3 with
respect to the VCCS and CCVS parameters can be expressed
as follows:

𝑆
𝑍

𝛽𝑌
= (𝛽𝑌 [Δ

(1+2)(5+6)
Δ
(7+8)(9+10),(1+2)(1+2)

× Δ
(11+12)(3+4),(1+2)(1+2)

+ Δ
(1+2)(9+10)

×Δ
(11+12)(5+6),(1+2)(1+2)

Δ
(7+8)(3+4),(1+2)(1+2)

])

× (Δ
2
Δ
(1+2)(3+4)

)
−1

.

(16)

We can see the product of squared determinant and the
transfer function numerator in formula denominator and
two terms in numerator. The first term here consists of
the numerators of transfer functions, from circuit input to
controlling voltage of VCVS, from voltage source of VCVS
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Table 2: The simplified sensitivity formulae in case of controlled source connecting with circuit output.

Number Sensitivity type Formula
Circuit Circuit

1 𝑆
𝑇

𝜇

𝜇U3V3

3, 8

2

1

−
+

4, 7

65

+
−

Vin
Vout

I3 ZI3

65
4, 7

1 3, 8

−
+

−
+

Vin

2

Vout

𝑆
𝐾

𝑍

Δ
(1+2)(1+2),(3+4)(3+4)

Δ
(1+2)(1+2)

2 𝑆
𝑍

𝜇

Iin

Vout

65

𝜇U32
V3

+
−

1 3, 8

4, 7

Iin

2

1

−

+

65

3, 8

4, 7

Vout

I3
ZI3

𝑆
𝑍

𝑍

Δ
(3+4)(3+4)

Δ

3 𝑆
𝑌

𝑌

65

V3

1

2

Iout
YU3

Iin 3, 87

4 I3

1

2

65

𝛽I3

7

+
−

Vin

Iout

3, 8

𝑆
𝑌

𝛽

Δ
0

(1+2)(1+2)

Δ
(1+2)(1+2)

4 𝑆
𝐵

𝑌

YU3 Iout

7

4

+
−

3, 8Vin

V3
65

1

2

𝛽I3

7 3, 8Iin

I3

1

2
4

Iout

65

𝑆
𝐵

𝛽

Δ
0

Δ

to controlling current of CCCS, and from current source of
CCCS to circuit output. For the second term we take into
account that succession of excitation transfer from input to
output of circuit is different. In that case the signal transfers
firstly to CCCS and then to VCVS.

For the purpose of obtaining the second-order sensitivity
function in Hoang form we just need to differentiate and
represent by means of HOSC formula (2). So for the circuit
presented in Figure 3 the sensitivity expression for voltage
transfer functionwith respect to parameters of CS is obtained
as follows:

𝑆
𝑇

𝛽𝑌
= (𝛽𝑌 [Δ

∞

(1+2)(3+4)
Δ
2
− Δ
𝑌→∞

Δ
𝛽→∞

(1+2)(3+4)
Δ

− Δ
𝑌→∞

(1+2)(3+4)
Δ
𝛽→∞

Δ − Δ
(1+2)(3+4)

Δ
∞
Δ

+ 2Δ
(1+2)(3+4)

Δ
𝛽→∞

Δ
𝑌→∞

])

× (Δ
2
Δ
(1+2)(3+4)

)
−1

,

(17)

where upper indexes ⟨⟨𝑌 → ∞⟩⟩ and ⟨⟨𝛽 → ∞⟩⟩ mean
that those HOSC are derived with 𝑌 → ∞ and 𝛽 → ∞

correspondingly. The index ⟨⟨∞⟩⟩ means that this HOSC is
derived with both parameters tending to infinity.

3. Symbolic Sensitivity Analysis Examples

Let us consider the voltage transfer function symbolic AC
sensitivity analysis of second-order low-pass filter shown
in Figure 4 [25]. The values of parameters elements are as
follows: 𝐶

1
= 18,7571 nF; 𝐶

2
= 9,37857 nF; 𝐺

1
= 𝐺
2
= 1mS;

𝜇 = 1.
As can be seen, the circuit topology makes it possible

to simplify sensitivity computation with respect to VCVS
parameter by means of formula from the first line of Table 2.
Taking into account the nodes numeration of filter circuit in
Figure 4 the sensitivity function can be expressed as follows:

𝑆
𝑇

𝜇
=
Δ
(1+0)(1+0),(2+0)(2+0)

Δ
(1+0)(1+0)

=
Δ 11,22

Δ
11

. (18)

The HOSC expansion is performed by means of GPEM.
In accordance with (7) the VCVS parameter is extracted from
circuit as shown in Figure 7.

The second summand of expression (Figure 7) is corre-
spond to the HOSC Δ 11,22, the numerator of formula (18). It
is desirable to obtain the polynomial symbolic expression so
the circuit expansion is performed by extracting capacitors
admittances.

Note, that admittances extraction leads to appearance
of two subcircuits with short circuit and deleting of the
element correspondingly. The determinant of the first circuit
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Figure 4: Second-order low-pass filter.

in (Figure 8) is equal to unity because both admittances
connected in short circuit. After expansion of element 𝐺

2

from second circuit in (Figure 8) we obtain the determinant
of short-circuited admittance𝐺

1
in the same way. In the third

circuit with parallel admittances the determinant is equal
to the elements sum. And the last circuit determinant is a
product of 𝐺

2
and 𝐺

1
.

The symbolic determinant expression for the first sum-
mand in (Figure 7) is shown in Figure 9

For computation of expression (Figure 9) the following
procedures were done: deletion of capacities admittance 𝑠𝐶

2

connecting in parallel with nullator, parameter extraction of
admittance 𝑠𝐶

1
connecting in series with nullator, followed

by deletion of the admittance 𝐺
1
connecting in parallel

with nullator. As a result we obtain norator-nullator pair
connected in opposite direction and determinant of that kind
of circuit is equal to “−1.”

Now we need to substitute the symbolic expression from
(Figures 8 and 9) in (18) to obtain the voltage gain sensitivity
function:

𝑆
𝑇

𝜇
=

𝑠
2
𝐶
1
𝐶
2
+ 𝑠 [𝐶

1
𝐺
2
+ 𝐶
2
(𝐺
1
+ 𝐺
2
)] + 𝐺

1
𝐺
2

𝑠2𝐶
1
𝐶
2
+ 𝑠 [(1 − 𝜇)𝐶

1
𝐺
2
+ 𝐶
2
(𝐺
1
+ 𝐺
2
)] + 𝐺

1
𝐺
2

.

(19)

The derivation process of sensitivity functions with
respect to other parameters is similar. For example we derive
the first- and second-order sensitivities 𝑆𝑇

𝐺
1

and 𝑆𝑇
𝐺
1
𝐺
2

:

𝑆
𝑇

𝐺
1

= −
𝑠
2
𝐶
1
𝐶
2
+ 𝑠 [𝐶

1
𝐺
2
+ 𝐶
1
𝐺
2
(1 − 𝜇)]

𝑠2𝐶
1
𝐶
2
+ 𝑠 [(1 − 𝜇)𝐶

1
𝐺
2
+ 𝐶
2
(𝐺
1
+ 𝐺
2
)] + 𝐺

1
𝐺
2

,

𝑆
𝑇

𝐺
1
𝐺
2

= (𝐺
1
𝐺
2
[Δ
(1+0)(1+4)

Δ
(1+4)(4+3),(1+0)(1+0)

× Δ
(4+3)(2+0),(1+0)(1+0)

+ Δ
(1+0)(4+3)

×Δ
(4+3)(1+4),(1+0)(1+0)

Δ
(1+4)(2+0),(1+0)(1+0)

])

× (Δ
2
Δ
(1+0)(2+0)

)
−1

,

(20)
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Figure 5: First- and second-order symbolic sensitivities versus
frequency 𝑓.
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Figure 6: The STAR network.

where

Δ
(1+0)(2+0)

= 𝜇𝐺
1
𝐺
2
,

Δ = 𝑠𝐶
2
(𝑠𝐶
1
+ 𝐺
2
(1 − 𝜇)) + 𝑠𝐶

1
(𝐺
2
+ 𝐺
1
) + 𝐺
1
𝐺
2
,

Δ
(1+0)(1+4)

= 𝑠
2
(𝐶
1
𝐶
2
) + 𝑠 (𝐶

1
𝐺
2
(1 − 𝜇) + 𝐶

2
𝐺
2
) ,

Δ
(1+4)(4+3),(1+0)(1+0)

= −𝑠𝐶
2
,

Δ
(4+3)(2+0),(1+0)(1+0)

= 𝑠 (−𝜇𝐶
1
) − 𝜇𝐺

1
,

Δ
(1+0)(4+3)

= 𝑠𝐶
2
𝐺
1
,

Δ
(4+3)(1+4),(1+0)(1+0)

= 𝑠 (𝐶
1
𝜇 − 𝐶

2
) ,

Δ
(1+4)(2+0),(1+0)(1+0)

= −𝜇𝐺
2
0.

(21)

Using Mathcad software symbolic sensitivity simulation
results versus frequency 𝑓 are shown in Figure 5.

As it is seen, the symbolic sensitivity analysis technique
based on the concept of high order summative cofactors and
GPEM rules can be implemented in circuit design process
and for circuit characterization, successfully.
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4. Comparison Test

4.1. The Comparison Conditions. In this section we present
the comparison of sensitivity expressions obtained by means
of three different approaches: the two-port transimpedance
method [6], the method based on the modified Coates flow-
graph [7], and the proposed technique. The test circuit is
shown in Figure 6 [7].

Let us suppose that voltage transfer function 𝑇(𝑠) and the
first- and second-order symbolic sensitivities with respect to
parameters 𝐺

4
and 𝐶

2
are under consideration. We compare

the formulae by following criteria in order to estimate the
methods calculation efficiency: the number of arithmetical
operations and occurrence of cancellations.

4.2. Symbolic Expressions Obtained by means of the GPEM-
Based Technique. The symbolic expressions 𝑇(𝑠), 𝑆𝑇

𝐺
4

, 𝑆𝑇
𝑠𝐶
2

,
and 𝑆

𝑇

𝐺
4
𝑠𝐶
2

shown below are calculated by means of the
symbolic circuit analysis program Cirsym. The sensitivity
functions are presented here in two forms: Hoang form (10)
and Bode form (Table 1).

The transfer function

𝑇 (𝑠) =
Δ
(1+0)(3+0)

Δ
, (22)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
(1+0)(3+0)

= 𝑦1 ∗ ((𝐺7 + 𝐺2 + 𝐺5 + 𝑦2) ∗ (𝐺1)

− 𝐺4 ∗ (𝐺6 + 𝐺3))

+ (𝐺7 + 𝐺2) ∗ 𝐺1 ∗ (𝐺5 + 𝑦2 + 𝐺4) ;

Δ = 𝑦1

∗ ((𝐺7 + 𝐺5 + 𝐺4) ∗ (−𝐺6) + (𝐺2 + 𝑦2) ∗ (𝐺3 + 𝐺1))

+ ((𝐺5 + 𝐺4 + 𝑦2)) ∗ ((𝐺3 + 𝐺1) ∗ (𝐺2) − 𝐺6 ∗ 𝐺7) .

(23)

The sensitivity functions in Hoang form

𝑆
𝑇

𝐺
4

= 𝐺
4
⋅ (

Δ
∞

(1+0)(3+0)

Δ
(1+0)(3+0)

−
Δ
∞

Δ
) , (24)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
∞

(1+0)(3+0)
= 𝑦1 ∗ (− (𝐺3 + 𝐺6)) + 𝐺1 ∗ (𝐺7 + 𝐺2) ;

Δ
∞
= (𝐺3 + 𝐺1) ∗ (𝐺2) − 𝐺6 ∗ (𝐺7 + 𝑦1) .

(25)

𝑆
𝑇

𝑠𝐶
2

= 𝑠𝐶
2
⋅ (

Δ
∞

(1+0)(3+0)

Δ
(1+0)(3+0)

−
Δ
∞

Δ
) , (26)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
∞

(1+0)(3+0)
= 𝐺1 ∗ (𝐺7 + 𝐺2 + 𝑦1) ;

Δ
∞
= (𝐺2 + 𝑦1) ∗ ((𝐺3 + 𝐺1)) − 𝐺6 ∗ 𝐺7,

(27)

𝑆
𝑇

𝐺
4
𝑠𝐶
2

= 𝐺4 ∗ 𝑦2

∗ ((Δ
∞

(1+0)(3+0)
∗ Δ ∗ Δ − Δ

𝑠𝐶
2
→∞

∗ Δ
𝐺
4
→∞

(1+0)(3+0)

∗ Δ − Δ
𝑠𝐶
2
→∞

(1+0)(3+0)
∗ Δ
𝐺
4
→∞

∗ Δ − Δ
(1+0)(3+0)

∗ Δ
∞
∗ Δ + 2

∗Δ
(1+0)(3+0)

∗ Δ
𝐺
4
→∞

∗ Δ
𝑠𝐶
2
→∞

)

× (Δ
(1+0)(3+0)

∗ Δ ∗ Δ)
−1
) ,

(28)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
𝐺
4
→∞

(1+0)(3+0)
= 𝑦1 ∗ (− (𝐺6 + 𝐺3)) + 𝐺1 ∗ (𝐺7 + 𝐺2) ;

Δ
𝑠𝐶
2
→∞

(1+0)(3+0)
= 𝐺1 ∗ (𝐺7 + 𝐺2 + 𝑦1) ;

Δ
∞

(1+0)(3+0)
= 0;

Δ
𝐺
4
→∞

= (𝐺3 + 𝐺1) ∗ (𝐺2) − 𝐺6 ∗ (𝐺7 + 𝑦1) ;

Δ
𝑠𝐶
2
→∞

= (𝐺2 + 𝑦1) ∗ ((𝐺3 + 𝐺1)) − 𝐺6 ∗ 𝐺7;

Δ
∞
= 0.

(29)

The sensitivity functions in Bode form

𝑆
𝑇

𝐺
4

=
−𝐺
4
Δ
(1+0)(1+2)

Δ
(1+2)(3+0),(1+0)(1+0)

ΔΔ
(1+0)(3+0)

, (30)
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where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
(1+0)(1+2)

= 𝐺1 ∗ (𝑦2 ∗ (−𝐺7) + 𝐺2 ∗ 𝐺5)

+ 𝑦1 ∗ ((𝐺2 + 𝑦2) ∗ (𝐺3) − 𝐺6 ∗ (𝐺7 + 𝐺5))

+ ((𝐺5 + 𝑦2)) ∗ (𝐺2 ∗ (𝐺3) − 𝐺6 ∗ 𝐺7) ;

Δ
(1+2)(3+0),(1+0)(1+0)

= 𝑦1 ∗ (𝐺6 + 𝐺3 + 𝐺1) ,

(31)

𝑆
𝐾

𝑠𝐶
2

=
−𝑦
2
Δ
(1+0)(2+3)

Δ
(2+3)(3+0),(1+0)(1+0)

ΔΔ
(1+0)(3+0)

, (32)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
(1+0)(2+3)

= 𝑦1 ∗ ((𝐺7 + 𝐺5) ∗ (−𝐺1) + 𝐺3 ∗ 𝐺4)

+ 𝐺4 ∗ (𝐺1 ∗ (−𝐺7) + 𝐺2 ∗ (𝐺3) − 𝐺6 ∗ 𝐺7)

− 𝐺1 ∗ 𝐺5 ∗ (𝐺7 + 𝐺2) ;

Δ
(2+3)(3+0),(1+0)(1+0)

= (−𝑦1 ∗ (𝐺6 + 𝐺3 + 𝐺1)) .

(33)

𝑆
𝑇

𝐺
4
𝑠𝐶
2

= (𝐺
4
𝑦
2
[Δ
(1+0)(1+2)

Δ
(1+2)(2+3),(1+0)(1+0)

× Δ
(2+3)(3+0),(1+0)(1+0)

+ Δ
(1+0)(2+3)

×Δ
(2+3)(1+2),(1+0)(1+0)

Δ
(1+2)(3+0),(1+0)(1+0)

])

× (Δ
2
Δ
(1+0)(2+0)

)
−1

,

(34)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

Δ
(1+0)(1+2)

= 𝐺1 ∗ (𝑦2 ∗ (−𝐺7) + 𝐺2 ∗ 𝐺5)

+ 𝑦1 ∗ ((𝐺2 + 𝑦2) ∗ (𝐺3) − 𝐺6 ∗ (𝐺7 + 𝐺5))

+ ((𝐺5 + 𝑦2)) ∗ (𝐺2 ∗ (𝐺3) − 𝐺6 ∗ 𝐺7) ;

Δ
(1+2)(2+3),(1+0)(1+0)

= 𝑦1 ∗ (− (𝐺3 + 𝐺1))

− ((𝐺3 + 𝐺1) ∗ (𝐺2) − 𝐺6 ∗ 𝐺7) ;

Δ
(2+3)(3+0),(1+0)(1+0)

= −𝑦1 ∗ (𝐺6 + 𝐺3 + 𝐺1) ;

Δ
(1+0)(2+3)

= 𝑦1 ∗ ((𝐺7 + 𝐺5) ∗ (−𝐺1) + 𝐺3 ∗ 𝐺4)

+ 𝐺4 ∗ (𝐺1 ∗ (−𝐺7) + 𝐺2 ∗ (𝐺3) − 𝐺6 ∗ 𝐺7)

− 𝐺1 ∗ 𝐺5 ∗ (𝐺7 + 𝐺2) ;

Δ
(2+3)(1+2),(1+0)(1+0)

= 𝑦1 ∗ (𝐺6)

− ((𝐺3 + 𝐺1) ∗ (𝐺2) − 𝐺6 ∗ 𝐺7) ;

Δ
(1+2)(3+0),(1+0)(1+0)

= 𝑦1 ∗ (𝐺6 + 𝐺3 + 𝐺1) .

(35)

4.3. Symbolic Expressions Obtained by means of Modified
Coates Flow-Graph Concept. TheCoates flow-graph is useful
and often used in the network theory. The modification of
Coates flow-graph provides the symbolic sensitivity analysis
of nullor-based equivalent circuits [7]. We will show here
that modification of Coates flow-graph is corresponding to
implementation of the nullor extraction formula (8).

Let us consider the flow-graph presented in Figure 8(a)
(see publication [7]) for the passive part of the equivalent
circuit of STAR network shown in Figure 6. The oriented
norator connected between nodes 3 and 0. The oriented
nullator connected between nodes 5 and 4.

First, we choose the node 3 as supporting and make the
norator short-circuited:

(1) the ends of all incoming edges (−𝑠𝐶
2
and −𝐺

2
) into

node 3 are moved to node 0;
(2) the self-loop 𝑌33 transforms into the incoming edge

into node 0;
(3) the edges connected to node 0 are not shown on

graph.
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Second, we choose the node 5 as supporting andmake the
nullator short-circuited:

(1) the end of incoming edge −𝐺
6
into node 5 is moved

to node 4;

(2) the self-loop𝑌55 transformed into the incoming edge
into node 4.

Third, we combine the two supporting nodes 3 and 5:

(1) the edge −𝐺
6
between nodes 3 and 5 transforms into

the self-loop in the new node named by 3;

(2) the parallel codirectional edges −𝐺
6
and 𝑌55 are

combined into the edge 𝑌55.

Consequently we obtained the modified Coates flow-
graph shown in Figure 8(b) (see publication [7]). Note that
in case of single supporting node the procedure of nodes
combining is not needed.

The estimation process of the determinant sign of mod-
ified Coates flow-graph is not formalized in [7]. It leads to
complications of method usage and high error probability.

Implementation of the oriented nullor concept [16] pro-
vides the simple rule for estimation of the sign of Coates
graph determinant: the sign is positive (negative), if norator
and nullator have the same (different) orientations against
the supporting nodes. In case of two supporting nodes the
inverted rule is needed.

The symbolic formulae 𝑇(𝑠), 𝑆𝑇
𝐺
4

, 𝑆𝑇
𝑠𝐶
2

, and 𝑆
𝑇

𝐺
4
𝑠𝐶
2

pre-
sented here were replicated from [7] with correction of typing
error in subexpression 𝑌55 and sign of determinants:

𝑇 (𝑠) = (−𝑌22 ∗ 𝐺1 ∗ 𝑌44 + 𝑦1 ∗ 𝑦1

∗𝐺1 + 𝑦1 ∗ 𝑌55 ∗ 𝐺4)

× (𝑌22 ∗ 𝐺6 ∗ 𝑌44 − 𝑌22 ∗ 𝐺2 ∗ 𝑌55 − 𝑦1

∗𝑦1 ∗ 𝐺6 − 𝑦1 ∗ 𝑦2 ∗ 𝑌55)
−1
,

(36)

where

𝑌22 = (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2) ;

𝑌44 = (𝐺2 + 𝐺7 + 𝑦1) ;

𝑌55 = (𝐺1 + 𝐺3 + 𝐺6) ;

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦
2
= 𝑠 ∗ 𝐶2.

(37)

Let us substitute the subexpressions 𝑌22, 𝑌44, and 𝑌55
into the transfer function (36):

𝑇 (𝑠) = ((− (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2) ∗ 𝐺1

∗ (𝐺2 + 𝐺7 + 𝑦1) + 𝑦1 ∗ 𝑦1 ∗ 𝐺1

+𝑦1 ∗ (𝐺1 + 𝐺3 + 𝐺6) ∗ 𝐺4))

× (((𝐺4 + 𝐺5 + 𝑦1 + 𝑦2) ∗ 𝐺6

∗ (𝐺2 + 𝐺7 + 𝑦1) − (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2)

∗ 𝐺2 ∗ (𝐺1 + 𝐺3 + 𝐺6) − 𝑦1 ∗ 𝑦1 ∗ 𝐺6

−𝑦1 ∗ 𝑦2 ∗ (𝐺1 + 𝐺3 + 𝐺6)))
−1
.

(38)

It is easy to verify that the expanded expressions of
the numerator and denominator will consist of the 16 and
28 summands correspondingly. After simplification only
12 terms in numerator and 16 terms in denominator will
remain. So, the transfer function (36) includes the 8 pairs of
cancellation sum-of-product terms:

𝑆
𝑇

𝐺
4

=
𝐺4

(−𝑌22 ∗ 𝐺1 ∗ 𝑌44 + 𝑦1 ∗ 𝑦1 ∗ 𝐺1 + 𝑦1 ∗ 𝑌55 ∗ 𝐺4)

∗(1 −
(𝑌44 ∗ (𝐺4 ∗ 𝐺6 − 𝐺1 ∗ 𝑦2) − 𝐺2 ∗ 𝐺4 ∗ 𝑌55 − 𝐺2 ∗ 𝐺1 ∗ 𝑦1)

(𝑌22 ∗ 𝐺6 ∗ 𝑌44 − 𝑌22 ∗ 𝐺2 ∗ 𝑌55 − 𝑌1 ∗ 𝑦1 ∗ 𝐺6 − 𝑦1 ∗ 𝑦2 ∗ 𝑌55)
) ∗ 𝑦1 ∗ 𝑌55,

(39)

𝑆
𝑇

𝑠𝐶
2

= (
𝑦2

(−𝑌22 ∗ 𝐺1 ∗ 𝑌44 + 𝑦1 ∗ 𝑦1 ∗ 𝐺1 + 𝑦1 ∗ 𝑌55 ∗ 𝐺4)

× (𝑌22 ∗ 𝐺6 ∗ 𝑌44 − 𝑌22 ∗ 𝐺2 ∗ 𝑌55 − 𝑦1 ∗ 𝑦1 ∗ 𝐺6 − 𝑦1 ∗ 𝑦2 ∗ 𝑌55)
−1
)

∗ (−𝑌44 ∗ (𝐺4 ∗ 𝐺6 − 𝐺1 ∗ 𝑦2) + 𝐺2 ∗ 𝐺4 ∗ 𝑌55 + 𝐺2 ∗ 𝐺1 ∗ 𝑦1 − 𝑌22 ∗ 𝐺1 ∗ 𝑌44 + 𝑦1 ∗ 𝑦1

∗𝐺1 + 𝑦1 ∗ 𝑌55 ∗ 𝐺4) ∗ 𝑦1 ∗ 𝑌55,

(40)
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𝑆
𝑇

𝐺4𝑠𝐶2
= (

−𝐺4 ∗ 𝑦2

(−𝑌22 ∗ 𝐺1 ∗ 𝑌44 + 𝑦1 ∗ 𝑦1 ∗ 𝐺1 + 𝑦1 ∗ 𝑌55 ∗ 𝐺4)

× (𝑌22 ∗ 𝐺6 ∗ 𝑌44 − 𝑌22 ∗ 𝐺2 ∗ 𝑌55 − 𝑦1
2
∗ 𝐺6 − 𝑦1 ∗ 𝑦2 ∗ 𝑌55)

−1

)

∗(− (−𝑌44 ∗ 𝐺6 + 𝑌55 ∗ 𝐺2) ∗ 𝑦1 ∗ 𝑌55

∗
(−𝑌44 ∗ (𝐺4 ∗ 𝐺6 − 𝐺1 ∗ 𝑦2) + 𝐺2 ∗ 𝐺4 ∗ 𝑌55 + 𝐺2 ∗ 𝐺1 ∗ 𝑦1 − 𝑌22 ∗ 𝐺1 ∗ 𝑌44 + 𝑦1 ∗ 𝑦1 ∗ 𝐺1 + 𝑦1 ∗ 𝑌55 ∗ 𝐺4)

(𝑌22 ∗ 𝐺6 ∗ 𝑌44 − 𝑌22 ∗ 𝐺2 ∗ 𝑌55 − 𝑦1 ∗ 𝑦1 ∗ 𝐺6 − 𝑦1 ∗ 𝑦2 ∗ 𝑌55)

− (−𝑌44 ∗ 𝐺6 + 𝑌55 ∗ 𝐺2 + 𝑦1 ∗ 𝑌55) ∗ 𝑦1 ∗ 𝑌55

∗(1 −
(𝑌44 ∗ (𝐺4 ∗ 𝐺6 − 𝐺1 ∗ 𝑦2) − 𝐺2 ∗ 𝐺4 ∗ 𝑌55 − 𝐺2 ∗ 𝐺1 ∗ 𝑦1)

(𝑌22 ∗ 𝐺6 ∗ 𝑌44 − 𝑌22 ∗ 𝐺2 ∗ 𝑌55 − 𝑦1 ∗ 𝑦1 ∗ 𝐺6 − 𝑦1 ∗ 𝑦2 ∗ 𝑌55)
)) .

(41)

4.4. Symbolic Expressions Obtained by means of Two-
Port Transimpedance Method. The sequences of expressions,
derived by symbolic analysis program STAINS [6], are listed
below. The calculation of second-order sensitivity is not
support in the current version of the program. So we present
here only the transfer function and two first-order symbolic
sensitivities with respect to parameters 𝐺

4
and 𝐶

2
:

𝑇 (𝑠) =
𝑍𝑜𝑖

𝑍𝑖𝑖
, (42)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

𝑥1 = −𝐺1; 𝑥2 = −𝐺2 − 𝐺6;

𝑥3 = 𝐺1 + 𝐺3 + 𝐺6; 𝑑1 =
𝐺2

(𝑦1)
;

𝑥4 = 𝐺4 ∗ 𝑑1;

𝑥5 = 𝐺2 + 𝐺6 + 𝑦2 + 𝑦2 ∗ 𝑑1;

𝑥6 = −𝑦2 − (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2) ∗ 𝑑1;

𝑑2 = −
(𝐺2 + 𝐺7 + 𝑦1)

(𝑦1)
;

𝑥7 = 𝑥1 + 𝐺4 ∗ 𝑑2; 𝑥8 = 𝑥2 + 𝑦2 ∗ 𝑑2;

𝑥9 = −𝑦1 − (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2) ∗ 𝑑2;

𝑑3 = −
𝐺1

(𝑥3)
; 𝑥10 = 𝐺1 + 𝐺4 − 𝑥7 ∗ 𝑑3;

𝑥11 = −𝑥8 ∗ 𝑑3; 𝑥12 = −𝐺4 − 𝑥9 ∗ 𝑑3;

𝑑4 = −
𝐺6

(𝑥3)
; 𝑥13 = 𝑥4 − 𝑥7 ∗ 𝑑4;

𝑥14 = 𝑥5 − 𝑥8 ∗ 𝑑4; 𝑥15 = 𝑥6 − 𝑥9 ∗ 𝑑4;

𝑍21 = 1 ∗ 𝑥12; 𝑍𝑜𝑖 = 𝑍21;

𝑍11 = −1 ∗ 𝑥15; 𝑍𝑖𝑖 = 𝑍11.

(43)

After substitution of the subexpressions into (42) we
obtain the transfer function expression as follows:

𝑇 (𝑠) = (−1 ∗ (𝐺4 ∗ (𝐺1 + 𝐺3 + 𝐺6) − 𝐺1

∗ ((−𝑠 ∗ 𝐶1) − (𝐺4 + 𝐺5 + 𝑠 ∗ (𝐶1 + 𝐶2))

∗ (−
(𝐺2 + 𝐺7 + 𝑠 ∗ 𝐶1)

(𝑠 ∗ 𝐶1)
))))

× (−1 ∗ (𝐺6 ∗ ((−𝑠 ∗ 𝐶1)

− (𝐺4 + 𝐺5 + 𝑠 ∗ (𝐶1 + 𝐶2))

∗(−
(𝐺2 + 𝐺7 + 𝑠 ∗ 𝐶1)

(𝑠 ∗ 𝐶1)
))

+ (−𝑠 ∗ 𝐶2 − (𝐺4 + 𝐺5 + 𝑠 ∗ (𝐶1 + 𝐶2))

∗(
𝐺2

(𝑠 ∗ 𝐶1)
))

∗ (𝐺1 + 𝐺3 + 𝐺6)))

−1

.

(44)

The expansion of the transfer function numerator and
denominator leads to obtaining the expressions with 16 and
28 terms correspondingly. Just as formula (36) the transfer
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function (42) includes the 8 pairs of cancellation sum-of-
product terms:

𝑆
𝑇

𝐺
4

= 𝐺4 ∗ 𝑍𝑘𝑖 ∗
(𝑍𝑜𝑘 ∗ 𝑍𝑖𝑖 − 𝑍𝑖𝑘 ∗ 𝑍𝑜𝑖)

(𝑍𝑜𝑖 ∗ 𝐷00 ∗ 𝑍𝑖𝑖)
, (45)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

𝑥1 = −𝐺1; 𝑥2 = −𝐺2 − 𝐺6;

𝑥3 = 𝐺1 + 𝐺3 + 𝐺6; 𝑑1 = −
𝐺1

(𝑥3)
;

𝑥4 = 𝐺1 + 𝐺4 − 𝑥1 ∗ 𝑑1; 𝑥5 = −𝑥2 ∗ 𝑑1;

𝑥6 = 𝑦1 ∗ 𝑑1 − 𝐺4; 𝑥7 = − (𝐺2 + 𝐺7 + 𝑦1) ∗ 𝑑1;

𝑑2 = −
𝐺6

(𝑥3)
; 𝑥8 = −𝑥1 ∗ 𝑑2;

𝑥9 = 𝐺2 + 𝐺6 + 𝑦2 − 𝑥2 ∗ 𝑑2;

𝑥10 = 𝑦1 ∗ 𝑑2 − 𝑦2;

𝑥11 = −𝐺2 − (𝐺2 + 𝐺7 + 𝑦1) ∗ 𝑑2;

𝑍21 = 1 ∗ (𝑥6 ∗ 𝑦1 + 𝑥7 ∗ (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2)) ;

𝑍𝑜𝑖 = 𝑍21;

𝑍11 = −1 ∗ (𝑥10 ∗ 𝑦1 + 𝑥11 ∗ (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2)) ;

𝑍𝑖𝑖 = 𝑍11; 𝑍13 = 1 ∗ (𝑥8 ∗ 𝑦1 − 𝑥11 ∗ 𝐺4) ;

𝑍𝑖𝑘 = 𝑍11 − 𝑍13; 𝑍23 = −1 ∗ (𝑥4 ∗ 𝑦1 − 𝑥7 ∗ 𝐺4) ;

𝑍𝑜𝑘 = 𝑍21 − 𝑍23; 𝑍31 = 1 ∗ (𝑥6 ∗ 𝑥11 − 𝑥7 ∗ 𝑥10) ;

𝑍𝑘𝑖 = 𝑍11 − 𝑍31;

𝐷00 = 𝑥4 ∗ 𝑍11 + 𝑥8 ∗ 𝑍21 − 𝐺4 ∗ 𝑍31.

(46)

𝑆
𝑇

𝑠𝐶
2

= 𝑦2 ∗ 𝑍𝑘𝑖 ∗
(𝑍𝑖𝑘 ∗ 𝑍𝑜𝑖 − 𝑍𝑜𝑘 ∗ 𝑍𝑖𝑖)

(𝑍𝑜𝑖 ∗ 𝐷00 ∗ 𝑍𝑖𝑖)
, (47)

where

𝑦1 = 𝑠 ∗ 𝐶1; 𝑦2 = 𝑠 ∗ 𝐶2;

𝑥1 = −𝐺1; 𝑥2 = −𝐺2 − 𝐺6;

𝑥3 = 𝐺1 + 𝐺3 + 𝐺6; 𝑑1 = −
𝐺1

(𝑥3)
;

𝑥4 = 𝐺1 + 𝐺4 − 𝑥1 ∗ 𝑑1; 𝑥5 = −𝑥2 ∗ 𝑑1;

𝑥6 = 𝑦1 ∗ 𝑑1 − 𝐺4; 𝑥7 = − (𝐺2 + 𝐺7 + 𝑦1) ∗ 𝑑1;

𝑑2 = −
𝐺6

(𝑥3)
; 𝑥8 = −𝑥1 ∗ 𝑑2;

Table 3: Comparison of symbolic analysis methods efficiency.

Symbolic function Symbolic analysis method M/D A/S

𝑇(𝑠)

GPEM (22) 14 20
MCFG (36) 17 13
TI (42) 29 34

𝑆
𝑇

𝐺4

GPEM (Hoang form) (24) 20 28
GPEM (Bode form) (30) 27 32

MCFG (39) 28 17
TI (45) 37 42

𝑆
𝑇

𝑠𝐶2

GPEM (Hoang form) (26) 19 26
GPEM (Bode form) (32) 27 33

MCFG (40) 34 20
TI (47) 37 43

𝑆
𝑇

𝐺4𝑠𝐶2

GPEM (Hoang form) (28) 50 72
GPEM (Bode form) (34) 54 63

MCFG (41) 68 38
TI — —

𝑥9 = 𝐺2 + 𝐺6 + 𝑦2 − 𝑥2 ∗ 𝑑2;

𝑥10 = 𝑦1 ∗ 𝑑2 − 𝑦2;

𝑥11 = −𝐺2 − (𝐺2 + 𝐺7 + 𝑦1) ∗ 𝑑2;

𝑍21 = 1 ∗ (𝑥6 ∗ 𝑦1 + 𝑥7 ∗ (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2)) ;

𝑍𝑜𝑖 = 𝑍21;

𝑍11 = −1 ∗ (𝑥10 ∗ 𝑦1 + 𝑥11 ∗ (𝐺4 + 𝐺5 + 𝑦1 + 𝑦2)) ;

𝑍𝑖𝑖 = 𝑍11; 𝑍12 = −0;

𝑍13 = 1 ∗ (𝑥8 ∗ 𝑦1 − 𝑥11 ∗ 𝐺4) ;

𝑍𝑖𝑘 = 𝑍12 − 𝑍13; 𝑍22 = 0;

𝑍23 = −1 ∗ (𝑥4 ∗ 𝑦1 − 𝑥7 ∗ 𝐺4) ;

𝑍𝑜𝑘 = 𝑍22 − 𝑍23;

𝑍31 = 1 ∗ (𝑥6 ∗ 𝑥11 − 𝑥7 ∗ 𝑥10) ;

𝑍𝑘𝑖 = 𝑍21 − 𝑍31;

𝐷00 = 𝑥4 ∗ 𝑍11 + 𝑥8 ∗ 𝑍21 − 𝐺4 ∗ 𝑍31.

(48)

4.5. Efficiency Comparison. In Table 3 we present the com-
parison of symbolic analysis methods efficiency by the
number of arithmetical operations. The multiplication and
division are denoted asM/D and the addition and subtraction
are denoted as A/S. The method based on modified Coates
flow-graph is denoted as MCFG and the transimpedance
method is denoted as TI.

As can be seen, the symbolic expressions obtained by
transimpedance method consist of the largest arithmetical
operations amount. The results of MCFG-computation are
comparable to expressions presented in Bode form obtained
by GPEM. The symbolic sensitivity functions presented in
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Hoang form are superior by number of arithmetical opera-
tions.

Both Bode and Hoang forms implement the four minor
calculations. But the presentation of sensitivity function in
Hoang form provides the optimal compact size of symbolic
expressions. On the other hand the formulae in Bode form
for special topological cases proposed in this paper provide
the significant simplification of circuit analysis inmany cases.

5. Conclusions

In this paper we have presented a method of computation the
circuit functions sensitivities in symbolic form. The method
requires neither matrix nor ordinary graph description of
the circuit. The main advantages of the proposed technique
are that it is cancellation-free and provided the compact
size of obtaining sensitivity expression as distinct from other
methods like the two-port transimpedance method and the
method based on themodified Coates flow-graph. It is shown
that presentation of sensitivity function in Hoang form
provides the optimal compact size of symbolic expressions,
and the formulae in Bode form provide the significant
simplification of active circuit symbolic analysis. The process
of calculation of first- and second-order and multiparameter
symbolic sensitivity is automated by computer program
Cirsym and allows obtaining all symbolic sensitivities simul-
taneously.
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